Tetrahedron Letters, Vol. 26, No. 39,pp 4771-4774,1985 Printed in Great Britain

0040-4039/85 \$3.00 + . 00
©1985 Perqamon Press Ltd.

NOVEL SYNTHESIS OF BENZOXAPHOSPHACYCLOALKANE DERIVATIVES VIA PALLADIUM-CATALYSED INTRAMOLECULAR FORHATION OF CARBON-PHOSPHORUS BOND

Yuanyao Xu* Jing Zhang
Shanghai Institute of Organic Chemistry, Academia Sincia, 345 Lingling Lu, Shanghai, People's Republic of China

Abstract

Summary: A novel synthesis of benzoxaphosphacycloalkane derivatives by palladium-catalysed intramoleclar cyclization of the corresponding alkaneor benzenephosphonous acid mono(ω-o-bromophenylalkyl)ester is presented.

In recent years, the synthesis of heterocyclic compounds using transition metals has attracted much attention ${ }^{1}$), since the use of transition metal species might well offer advantages over the more conventional routes in terms of milder reaction conditions, better selectivity, novel synthetic routes, and the use of more readily available starting material. Phosphorus heterocycles constitute a class of compounds possessing potent biological activity ${ }^{2}$, however, to our knowledge, no example on transition metal catalysed or promoted synthesis of phosphorus heterocycles has been reported.

Recently, it is known that aryl- and alkenylphosphonates ${ }^{31}$, arylphenylphosphinates ${ }^{4}$), alkylarylphosphinates ${ }^{51}$, alkylarylphenylphosphine oxides ${ }^{6}$) and also alkenylmethyl- and alkylarylphosphinates ${ }^{7}$) could be synthesized via palladium-catalysed formation of carbon-phosphorus bond. Herein, we wish to describe the first synthesis of benzoxaphosphacycloalkane derivatives via the palladium-catalysed intramolecular formation of carbon-phosphorus bond as shown by the following scheme.

$1 \mathrm{a}-\mathrm{g}$
$2 \mathrm{a}-\mathrm{g}$

$$
\begin{array}{ll}
R=C H_{3}, & n=1,2,3 \\
R=n-C_{4} H_{9}, & n=2,3 \\
R=C_{6} H_{5}, & n=2,3
\end{array}
$$

1h-i

$$
n=1,2
$$

Table. Synthesis of benzoxaphosphacycloakane derivatives ${ }^{\text {a) }}$

Run	Alkane- or Benzenephosphonous Acid Monoester	Reaction Time (h)	Product ${ }^{\text {b }}$	$\begin{aligned} & \text { m.p. }\left({ }^{\circ} \mathrm{C}\right) \\ & \text { or }\left({ }^{\circ} \mathrm{C} / \mathrm{mm}\right) \end{aligned}$	$\underset{(z)}{\text { Yield } \left.)^{C}\right)}$
1	$\mathrm{Or}_{\mathrm{Br}} \mathrm{CH}_{2} \mathrm{CO}_{-}^{-}=\mathrm{O}$	7		$\begin{aligned} & 66-68^{\circ} \\ & (1 \mathrm{it} .8) \\ & \left.70-72^{\circ}\right) \end{aligned}$	45
2		7		$125 \% 0.1$	49
3	10	7 ${ }^{\text {d }}$	2b	$123-124^{\circ} / 0.2$	48
4	$\widehat{\mathrm{Or}}_{\mathrm{Br}}^{1 \mathrm{CH}_{2} \mathrm{H}_{2} \mathrm{O}}=\mathrm{CP}^{-}=\mathrm{O}$	5		$75-77^{\circ}$	41
5	$\overbrace{\mathrm{Br}}^{\mathrm{CH}_{2} \mathrm{l}_{2} \mathrm{O}}=-{ }^{-}={ }_{-}^{\mathrm{O}} \mathrm{C}_{6} \mathrm{H}_{5} \text { Id }$	6	O-2	$83-84^{\circ}$	50
6	$\overbrace{\mathrm{Br}}^{\mathrm{CH} \mathrm{H}_{3} \mathrm{H}_{3} \mathrm{O}_{-}^{-}=0}{ }_{\mathrm{CH}_{3}}^{-\mathrm{O}}$	7	OR=-2e	144-145 ${ }^{\circ}$	41
7	1e	$8^{\text {d) }}$	$\underline{2 e}$	144-145 ${ }^{\circ}$	45
8		f 5		77-78	39
9	$\overbrace{\mathrm{Br}}^{\left.\mathrm{O}^{-}-\mathrm{CH}_{2}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{5}}$	6	OR=-	150-152 ${ }^{\circ}$	45
10		$\text { h } \quad 10$	$\mathrm{O}_{0}^{2}=\mathrm{CO}_{-2}^{-0}-\mathrm{CH}_{3}$	114-116 ${ }^{\circ}$	(34)
11		$\text { Ii } \quad 12$	$\underline{2 i}$	119-121 ${ }^{\circ}$	(13)

a) Reaction Conditions: l equiv. of alkane- or benzenephosphonite monester, 5 molg $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and 3 equiv. of triethylamine in dry toluene at $100^{\circ} \mathrm{C}$ for 5-12 h under nitrogen, unless otherwise stated.
b) All new compounds have been fully characterized spectrally (IR, $l_{H-N M R, ~ M S) ~}^{\text {(}}$, and elemental composition determined by combustion analysis or nigh-resolution mass spectroscopy ${ }^{9}$).
c) Isolated yields,GLC yields in parenthesis.
d) 5 moly of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ was used as the catalyst.

Transesterification of monoethyl alkane- or benzenephosphosphonite with the corresponding ω-o-bromophenylalkanols yielded the alkane- or benzenephosphonous acid mono(ω-o-bromophenylalkyl)ester (la-i) respectively, which on treatment with 5 molq of tetrakis(triphenylphosphine)palladium in the presence of excess triethylamine in toluene underwent intramolecular cyclization, affording the corresponding benzoxaphosphacycloalkane derivative (2a-i).

In a typical experiment, the methanephosphonous acid mono(β-o-bromophenylethyl)ester ($1 \mathrm{~b}, 9 \mathrm{mmol}$), tetrakis(tiphenylphosphine)palladium (0.45 mmol) and triethylamine ($4 \mathrm{ml}, 29 \mathrm{mmol}$) in toluene (25 ml) was placed in a thick-wall tube. The tube was flushed with nitrogen, capped and heated in an oil bath at 100° for 7 h . Ethyl acetate was added and then filtered. The filtrate was concentrated on a rotary evaporator and the residue was purified by column chromatography on silica gel eluating with petroleum ether (b.p. 60-90)/ethyl acetate. The product thus obtained was further purified by distillation to give 1 -methyl-2, l-benzoxaphosphacyclohexane-l-oxide (2b, b.p. $125^{\circ} \mathrm{C} / 0.1 \mathrm{~mm}$) in 49% yield; IR(neat) $1220,1020 \mathrm{~cm}^{-1} ; \mathrm{l}_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CCl}_{4}, \delta\right) 1.51\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{P}-\mathrm{CH}_{3}, \mathrm{~J}_{\mathrm{P}}, \mathrm{CH}_{3}\right.$ $=15 \mathrm{~Hz}), 3.0\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.51(\mathrm{~m}, 4 \mathrm{H}, \operatorname{arom}) ; \mathrm{MS}, \mathrm{m} / \mathrm{e}$ $182\left(\mathrm{M}^{+}\right)$. Elem. anal. calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 59.33 ; \mathrm{H}, 6.09$; $\mathrm{P}, 17.01$; found: C, 59.69; H, 6.12; P, 17.11.

The results are summarized in the Table. Those cyclized products with a five membered (run 1) or a six membered ring (runs 2,4,5) are formed with ease in 41-50\% yield. Products with seven membered ring are obtained in comparative yields (runs 6,8,9). Interestingly, it is shown that products with eight membered ring (run 10) and nine membered ring (run 11) can also be formed via this palladium route, albeit in much lower yields. Moreover, the cyclization reaction proceeds equally well with dichlorobis(triphenylphosphine)palladium instead of tetrakis(triphenylphosphine)palladium as the catalyst (runs 3,7), implying that the p (II) species is reduced in situ to the pd(0) species by the action of phosphonites with the aid of triethylamine ${ }^{10}$).

Acknowledgement: Thanks are due to the Science Fund of Academia Sinica for partial financial support.

References and Notes
l) J. L. Davidson, P. N. Preston, "Use of Transition Organometallic Compounds in Heterocyclic synthesis" in "Advances in Heterocyclic Chemistry", Vol. 30, p. 321 (1982).
2) L. D. Quin, "The Heterocyclic chemistry of Phosphorus", John Wiley and Sons, 1981.
3) T. Hirao, T. Masunaga, N. Yamada, Y. Ohshiro, T. Agawa, Bull. Chem. Soc. Jpn., 55, 909 (1982).
4) Yuanyao Xu, zhong Li, Jiazhi Xia, Huiju Guo, Yaozeng Huang, Synthesis, 377 (1983).
5) Yuanyao $X u$, Jing Zhang, Synthesis, 778 (1984).
6) Yuanyao Xu, Zhong Li, Jiazhi Xia, Huiju Guo, Yaozeng Huang, Synthesis, 781 (1983).
7) Yuanyao $X u$, Zhong Li, submitted for publication.
8) J. A. Miles, R. C. Grabiak, C. Cummins, J. Org. chem., 47, 1677 (1982).
 $5.25(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~m}, 4 \mathrm{H}) .2 \mathrm{C}, \mathrm{l}_{\mathrm{H}-\mathrm{NMR}\left(\mathrm{CCl}_{4}, \delta\right), 1.5-2.2(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~d}, ~}^{\mathrm{C}}$, $3 \mathrm{H}), 3.03(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~m}, 4 \mathrm{H})$; calcd. exact mass for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{P}: 224.097$, found: 224.096. 2d, $\mathrm{l}_{\mathrm{H}-\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, \delta\right), 3.15(\mathrm{~m}, 2 \mathrm{H})$, $4.53(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 9 \mathrm{H})$; calcd. exact mass for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{P}: 244.065$, found: 224.064. 2e, $1_{\mathrm{H}-\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, \delta\right), 1.5-2.2(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~d}, 3 \mathrm{H}), 3.03$ $(\mathrm{m}, 2 \mathrm{H}), 7.69(\mathrm{~m}, 4 \mathrm{H})$; $\mathrm{MS}, 192\left(\mathrm{M}^{+}\right)$; elem. anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}$, 61.24; H, 6.68; P, 15.80; found: C, 60.96; H, 6.42; P, 16.00. 2f, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, \delta\right), 0.88-1.9(\mathrm{~m}, 9 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~m}, 2 \mathrm{H}), 7.47$ ($\mathrm{m}, 4 \mathrm{H}$); calcd. exact mass for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}$: 238.112, found: 238.113. 2g, $1_{\mathrm{H}-\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, \delta\right), 2.06(\mathrm{~m}, 2 \mathrm{H}), 3.0(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~m}, 9 \mathrm{H})$; calcd. exact mass for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{P}: 258.081$, found: 258.082 . $2 \mathrm{~h}, \mathrm{l}_{\mathrm{H}-\mathrm{NMR}}$ $\left(\mathrm{CDCl}_{3}, \delta\right), 1.65(\mathrm{~d}, 3 \mathrm{H}), 3.89(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{~d}, 2 \mathrm{H}), 7.71(\mathrm{~m}, 4 \mathrm{H})$; calcd. exact mass for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{P}: 212.060$, found: 212.062 . $\underline{2}$ i,${ }^{1}{ }_{\mathrm{H}-\mathrm{NMR}}$ $\left(\mathrm{CDCl}_{3}, \delta\right), 1.71(\mathrm{~d}, 3 \mathrm{H}), 1.8(\mathrm{~m}, 2 \mathrm{II}), 3.73(\mathrm{t}, 2 \mathrm{H}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~d}$, $2 \mathrm{H}), 7.74(\mathrm{~m}, 4 \mathrm{H})$; calcd. exact mass for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P}: 226.076$, found: 226.078 .
10)In order to verify that $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ is reduced to $\mathrm{Pd}(0)$ species by the action of phosphonites with the aid of $E t_{3} N$, the following experiment has been performed: equimolar amt. of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and monoethyl methanephosphonite was allowed to react in the presence of excess triethylamine and triphenylphosphine in DMSO and the yellow crystalline palladium complex formed was submitted to ESCA determination. It is shown clearly that only the $\operatorname{Pd}(0)$ species is present (binding energy for $\operatorname{Pd} 3 d_{5 / 2} 336 \mathrm{eV}$ and for Pd $\left.3 \mathrm{~d}_{3 / 2} 341.3 \mathrm{eV}\right)$.
(Received in Japan 22 June 1985)

